z-logo
Premium
Optically derived metabolic and hemodynamic parameters predict hippocampal neurogenesis in the BTBR mouse model of autism
Author(s) -
Abookasis David,
Lerman Danit,
Roth Hava,
Tfilin Matanel,
Turgeman Gadi
Publication year - 2018
Publication title -
journal of biophotonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.877
H-Index - 66
eISSN - 1864-0648
pISSN - 1864-063X
DOI - 10.1002/jbio.201600322
Subject(s) - neurogenesis , hippocampal formation , dentate gyrus , neuroscience , cerebral blood flow , autism , doublecortin , hippocampus , medicine , psychology , psychiatry
In this study, we made use of dual‐wavelength laser speckle imaging (DW‐LSI) to assess cerebral blood flow (CBF) in the BTBR‐genetic mouse model of autism spectrum disorder, as well as control (C57Bl/6J) mice. Since the deficits in social behavior demonstrated by BTBR mice are attributed to changes in neural tissue structure and function, we postulated that these changes can be detected optically using DW‐LSI. BTBR mice demonstrated reductions in both CBF and cerebral oxygen metabolism (CMRO 2 ), as suggested by studies using conventional neuroimaging technologies to reflect impaired neuronal activation and cognitive function. To validate the monitoring of CBF by DW‐LSI, measurements with laser Doppler flowmetry (LDF) were also performed which confirmed the lowered CBF in the autistic‐like group. Furthermore, we found in vivo cortical CBF measurements to predict the rate of hippocampal neurogenesis, measured ex vivo by the number of neurons expressing doublecortin or the cellular proliferation marker Ki‐67 in the dentate gyrus, with a strong positive correlation between CBF and neurogenesis markers (Pearson, r = 0.78; 0.9, respectively). These novel findings identifying cortical CBF as a predictive parameter of hippocampal neurogenesis highlight the power and flexibility of the DW‐LSI and LDF setups for studying neurogenesis trends under normal and pathological conditions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here