z-logo
Premium
Feasibility of photoacoustic evaluations on dual‐thermal treatment of ex vivo bladder tumors
Author(s) -
Nguyen Van Phuc,
Oh Junghwan,
Park Suhyun,
Wook Kang Hyun
Publication year - 2017
Publication title -
journal of biophotonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.877
H-Index - 66
eISSN - 1864-0648
pISSN - 1864-063X
DOI - 10.1002/jbio.201600045
Subject(s) - ex vivo , photoacoustic imaging in biomedicine , medicine , in vivo , ultrasound , therapeutic ultrasound , high intensity focused ultrasound , biomedical engineering , radiology , nuclear medicine , urology , biology , optics , physics , microbiology and biotechnology
A variety of thermal therapeutic methods have been investigated to treat bladder tumors but often cause bowel injury and bladder wall perforation due to high treatment dosage and limited clinical margins. The objective of the current study is to develop a dual‐thermal modality to deeply coagulate the bladder tumors at low thermal dosage and to evaluate therapeutic outcomes with high contrast photoacoustic imaging (PAI). High intensity focused ultrasound (HIFU) is combined with 532 nm laser light to enhance therapeutic depth during thermal treatments on artificial tumor‐injected bladder tissue ex vivo . PAI is employed to identify the margins of the tumors pre‐ and post‐treatments. The dual‐thermal modality achieves 3‐ and 1.8‐fold higher transient temperature changes and 2.2‐ and 1.5‐fold deeper tissue denaturation than laser and HIFU, respectively. PAI vividly identifies the position of the injected tumor and entails approximately 7.9 times higher image contrast from the coagulated tumor as that from the untreated tumor. Spectroscopic analysis exhibits that both 740 nm and 760 nm attains the maximum photoacoustic amplitudes from the treated areas. The proposed PAI‐guided dual‐thermal treatments (laser and HIFU) treatments can be a feasible therapeutic modality to treat bladder tumors in a controlled and efficient manner.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here