Premium
Non‐invasive optical assessment of viscosity of middle ear effusions in otitis media
Author(s) -
Monroy Guillermo L.,
Pande Paritosh,
Shelton Ryan L.,
Nolan Ryan M.,
Spillman Darold R.,
Porter Ryan G.,
Novak Michael A.,
Boppart Stephen A.
Publication year - 2017
Publication title -
journal of biophotonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.877
H-Index - 66
eISSN - 1864-0648
pISSN - 1864-063X
DOI - 10.1002/jbio.201500313
Subject(s) - otitis , middle ear , medicine , audiology , pathology , anatomy , surgery
Eustachian tube dysfunction can cause fluid to collect within the middle ear cavity and form a middle ear effusion (MEE). MEEs can persist for weeks or months and cause hearing loss as well as speech and learning delays in young children. The ability of a physician to accurately identify and characterize the middle ear for signs of fluid and/or infection is crucial to provide the most appropriate treatment for the patient. Currently, middle ear infections are assessed with otoscopy, which provides limited and only qualitative diagnostic information. In this study, we propose a method utilizing cross‐sectional depth‐resolved optical coherence tomography to noninvasively measure the diffusion coefficient and viscosity of colloid suspensions, such as a MEE. Experimental validation of the proposed technique on simulated MEE phantoms with varying viscosity and particulate characteristics is presented, along with some preliminary results from in vivo and ex vivo samples of human MEEs.In vivo Optical Coherence Tomography (OCT) image of a human tympanic membrane and Middle Ear Effusion (MEE) (top), with a CCD image of the tympanic membrane surface (inset). Below is the corresponding time‐lapse M‐mode OCT data acquired along the white dotted line over time, which can be analyzed to determine the Stokes–Einstein diffusion coefficient of the effusion.