Premium
Capillary blood flow imaging within human finger cuticle using optical microangiography
Author(s) -
Baran Utku,
Shi Lei,
Wang Ruikang K.
Publication year - 2015
Publication title -
journal of biophotonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.877
H-Index - 66
eISSN - 1864-0648
pISSN - 1864-063X
DOI - 10.1002/jbio.201300154
Subject(s) - microangiography , blood flow , biomedical engineering , capillary action , laser doppler velocimetry , materials science , medicine , anatomy , radiology , composite material
We report non‐invasive 3D imaging of capillary blood flow within human finger cuticle by the use of Doppler optical microangiography (DOMAG) and ultra‐high sensitive optical microangiography (UHS‐OMAG) techniques. Wide velocity range DOMAG method is applied to provide red blood cell (RBC) axial velocity mapping in capillary loops with ranges of ±0.9 mm/s and ±0.3 mm/s. Additionally, UHS‐OMAG technique is engineered to acquire high resolution image of capillary morphology. The presented results are promising to facilitate clinical trials of treatment and diagnosis of various diseases such as diabetes, Raynaud's phenomenon, and connective tissue diseases by quantifying cutaneous blood flow changes within human finger cuticle. (© 2013 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom