z-logo
Premium
In‐vivo Tumor detection using diffusion reflection measurements of targeted gold nanorods – a quantitative study
Author(s) -
Ankri Rinat,
Duadi Hamootal,
Motiei Menachem,
Fixler Dror
Publication year - 2012
Publication title -
journal of biophotonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.877
H-Index - 66
eISSN - 1864-0648
pISSN - 1864-063X
DOI - 10.1002/jbio.201100120
Subject(s) - nanorod , in vivo , reflection (computer programming) , diffusion , nanotechnology , materials science , chemistry , computer science , biology , physics , programming language , thermodynamics , microbiology and biotechnology
The ability to quantitatively and non‐invasively detect nanoparticles has important implications on their development as an in‐vivo cancer diagnostic tool. The Diffusion Reflection (DR) method is a simple, non‐invasive imaging technique which has been proven useful for the investigation of tissue's optical parameters. In this study, Monte Carlo (MC) simulations, tissue‐like phantom experiments and in‐vivo measurements of the reflected light intensity from tumor bearing mice are presented. Following intravenous injection of antibody conjugated poly (ethylene glycol)‐coated (PEGylated) gold nanorods (GNR) to tumor‐bearing mice, accumulation of GNR in the tumor was clearly detected by the DR profile of the tumor. The ability of DR measurements to quantitate in‐vivo the concentration of the GNR in the tumor was demonstrated and validated with Flame Atomic Absorption spectroscopy results. With GNR as absorbing contrast agents, DR has important potential applications in the image guided therapy of superficial tumors such as head and neck cancer, breast cancer and melanoma. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here