z-logo
Premium
Minimally invasive non‐thermal laser technology using laser‐induced optical breakdown for skin rejuvenation
Author(s) -
Habbema Louis,
Verhagen Rieko,
Van Hal Robbert,
Liu Yan,
Varghese Babu
Publication year - 2012
Publication title -
journal of biophotonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.877
H-Index - 66
eISSN - 1864-0648
pISSN - 1864-063X
DOI - 10.1002/jbio.201100083
Subject(s) - dermis , rejuvenation , epidermis (zoology) , laser , human skin , biomedical engineering , materials science , in vivo , ablative case , ex vivo , dermatology , pathology , optics , medicine , surgery , anatomy , biology , radiation therapy , physics , genetics , microbiology and biotechnology
We describe a novel, minimally invasive laser technology for skin rejuvenation by creating isolated microscopic lesions within tissue below the epidermis using laser induced optical breakdown. Using an in‐house built prototype device, tightly focused near‐infrared laser pulses are used to create optical breakdown in the dermis while leaving the epidermis intact, resulting in lesions due to cavitation and plasma explosion. This stimulates a healing response and consequently skin remodelling, resulting in skin rejuvenation effects. Analysis of ex‐vivo and in‐vivo treated human skin samples successfully demonstrated the safety and effectiveness of the microscopic lesion creation inside the dermis. Treatments led to mild side effects that can be controlled by small optimizations of the optical skin contact and treatment depth within the skin. The histological results from a limited panel test performed on five test volunteers show evidence of microscopic lesion creation and new collagen formation at the sites of the optical breakdown. This potentially introduces a safe, breakthrough treatment procedure for skin rejuvenation without damaging the epidermis with no or little social down‐time and with efficacy comparable to conventional fractional ablative techniques. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here