z-logo
Premium
Dynamic study of PLGA/CS nanoparticles delivery containing drug model into phantom tissue using CO 2 laser for clinical applications
Author(s) -
Mahmoodi Mahboobeh,
Khosroshahi Mohammad E.,
Atyabi Fatemeh
Publication year - 2011
Publication title -
journal of biophotonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.877
H-Index - 66
eISSN - 1864-0648
pISSN - 1864-063X
DOI - 10.1002/jbio.201000121
Subject(s) - photothermal therapy , materials science , drug delivery , laser , plga , vaporization , nanoparticle , imaging phantom , coating , nanotechnology , biomedical engineering , optics , chemistry , organic chemistry , physics , medicine
In this study, cationic nanoparticles (NPs) were prepared by coating chitosan (CS) on the surface of PLGA NPs. To our knowledge most of the work in the field of drug delivery systems using lasers has been performed using short pulses with micron and submicron durations. We carried out an experiment using superlong PLS‐R (10 ms) and CW CO 2 laser modes on simulated drug‐biogelatin model where drug was encapsulated by PLGA/CS NPs. Maximum depth of drug containing cavitation was achieved faster at higher powers and shorter irradiation time in CWC mode. We believe that the main mechanism at work with superlong pulses is both photothermal due to vaporization and photomechanical due to photophoresis and cavitation collapse. In the case of CW, however, it is purely photothermal. Thus, drug molecules can be transported into tissue bulk by thermal waves which can be described by the Fick's law in 3‐D model for a given cavity geometry and the mechanical waves, unlike only by pure photomechanical waves (i.e. photoacoustically) as with short pulses. Therefore, our studies could offer an alternative for currently existing method for drug delivery. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here