z-logo
Premium
Comparison of pulsed photothermal radiometry, optical coherence tomography and ultrasound for melanoma thickness measurement in PDMS tissue phantoms
Author(s) -
Wang Tianyi,
Mallidi Srivalleesha,
Qiu Jinze,
Ma Li L.,
Paranjape Amit S.,
Sun Jingjing,
Kuranov Roman V.,
Johnston Keith P.,
Milner Thomas E.
Publication year - 2011
Publication title -
journal of biophotonics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.877
H-Index - 66
eISSN - 1864-0648
pISSN - 1864-063X
DOI - 10.1002/jbio.201000078
Subject(s) - optical coherence tomography , optics , materials science , biomedical engineering , monte carlo method , nuclear medicine , medicine , physics , statistics , mathematics
Melanoma accounts for 75% of all skin cancer deaths. Pulsed photothermal radiometry (PPTR), optical coherence tomography (OCT) and ultrasound (US) are non‐invasive imaging techniques that may be used to measure melanoma thickness, thus, determining surgical margins. We constructed a series of PDMS tissue phantoms simulating melanomas of different thicknesses. PPTR, OCT and US measurements were recorded from PDMS tissue phantoms and results were compared in terms of axial imaging range, axial resolution and imaging time. A Monte Carlo simulation and three‐dimensional heat transfer model was constructed to simulate PPTR measurement. Experimental results show that PPTR and US can provide a wide axial imaging range (75 μm–1.7 mm and 120–910 μm respectively) but poor axial resolution (75 and 120 μm respectively) in PDMS tissue phantoms, while OCT has the most superficial axial imaging range (14–450 μm) but highest axial resolution (14 μm). The Monte Carlo simulation and three‐dimensional heat transfer model give good agreement with PPTR measurement. PPTR and US are suited to measure thicker melanoma lesions (<$>><$>400 μm), while OCT is better to measure thin melanoma lesions (<$><<$>400 μm). (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here