Premium
Lens cholesterol biosynthesis inhibition: A common mechanism of cataract formation in laboratory animals by pharmaceutical products
Author(s) -
Aleo Michael D.,
Doshna Colleen M.,
Baltrukonis Daniel,
Fortner Jay H.,
Drupa Cynthia A.,
Navetta Kimberly A.,
Fritz Carol A.,
Potter David M.,
Verdugo Maria E.,
Beierschmitt William P.
Publication year - 2019
Publication title -
journal of applied toxicology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.784
H-Index - 87
eISSN - 1099-1263
pISSN - 0260-437X
DOI - 10.1002/jat.3822
Subject(s) - bioassay , pharmacology , toxicity , medicine , in vivo , endocrinology , chemistry , biology , biochemistry , genetics , microbiology and biotechnology
CJ‐12,918, a 5‐lipoxygenase (5‐LO) inhibitor, caused cataracts during a 1‐month safety assessment studies in rats whereas the structurally similar ZD‐2138 was without effect. For CJ‐12,918 analogs, blocking different sites of metabolic liability reduced (CJ‐13,454) and eliminated (CJ‐13,610) cataract formation in both rats and dogs. Using this chemical series as a test set, models and mechanisms of toxicity were first explored by testing the utility of ex vivo rat lens explant cultures as a safety screen. This model overpredicted the cataractogenic potential of ZD‐2138 due to appreciably high lens drug levels and was abandoned in favor of a mechanism‐based screen. Perturbations in lens sterol content, from a decline in lathosterol content, preceded cataract formation suggesting CJ‐12,918 inhibited lens cholesterol biosynthesis (LCB). A 2‐day bioassay in rats using ex vivo LCB assessments showed that the level of LCB inhibition was correlated with incidence of cataract formation in animal studies by these 5‐LO inhibitors. Thereafter, this 2‐day bioassay was applied to other pharmaceutical programs (neuronal nitric oxide synthase, sorbitol dehydrogenase inhibitor, squalene synthetase inhibitor and stearoyl‐CoA desaturase‐1 inhibitors/D 4 antagonists) that demonstrated cataract formation in either rats or dogs. LCB inhibition >40% was associated with a high incidence of cataract formation in both rats and dogs that was species specific. Bioassay sensitivity/specificity were further explored with positive (RGH‐6201/ciglitazone/U18666A) and negative (tamoxifen/naphthalene/galactose) mechanistic controls. This body of work over two decades shows that LCB inhibition was a common mechanism of cataract formation by pharmaceutical agents and defined a level of inhibition >40% that was typically associated with causing cataracts in safety assessment studies typically ≥1 month.