Premium
Macroeconomic forecast accuracy in a data‐rich environment
Author(s) -
Kotchoni Rachidi,
Leroux Maxime,
Stevanovic Dalibor
Publication year - 2019
Publication title -
journal of applied econometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.878
H-Index - 99
eISSN - 1099-1255
pISSN - 0883-7252
DOI - 10.1002/jae.2725
Subject(s) - univariate , econometrics , inflation (cosmology) , index (typography) , computer science , regularization (linguistics) , time series , statistics , multivariate statistics , mathematics , machine learning , artificial intelligence , theoretical physics , world wide web , physics
Summary The performance of six classes of models in forecasting different types of economic series is evaluated in an extensive pseudo out‐of‐sample exercise. One of these forecasting models, regularized data‐rich model averaging (RDRMA), is new in the literature. The findings can be summarized in four points. First, RDRMA is difficult to beat in general and generates the best forecasts for real variables. This performance is attributed to the combination of regularization and model averaging, and it confirms that a smart handling of large data sets can lead to substantial improvements over univariate approaches. Second, the ARMA(1,1) model emerges as the best to forecast inflation changes in the short run, while RDRMA dominates at longer horizons. Third, the returns on the S&P 500 index are predictable by RDRMA at short horizons. Finally, the forecast accuracy and the optimal structure of the forecasting equations are quite unstable over time.