Premium
Identifying relevant and irrelevant variables in sparse factor models
Author(s) -
Kaufmann Sylvia,
Schumacher Christian
Publication year - 2017
Publication title -
journal of applied econometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.878
H-Index - 99
eISSN - 1099-1255
pISSN - 0883-7252
DOI - 10.1002/jae.2566
Subject(s) - factor analysis , econometrics , estimation , bayesian probability , computer science , factor (programming language) , bayesian vector autoregression , inflation (cosmology) , statistics , mathematics , artificial intelligence , economics , physics , management , theoretical physics , programming language
Summary This paper considers factor estimation from heterogeneous data, where some of the variables—the relevant ones—are informative for estimating the factors, and others—the irrelevant ones—are not. We estimate the factor model within a Bayesian framework, specifying a sparse prior distribution for the factor loadings. Based on identified posterior factor loading estimates, we provide alternative methods to identify relevant and irrelevant variables. Simulations show that both types of variables are identified quite accurately. Empirical estimates for a large multi‐country GDP dataset and a disaggregated inflation dataset for the USA show that a considerable share of variables is irrelevant for factor estimation.