z-logo
Premium
Granger Causality and Regime Inference in Markov Switching VAR Models with Bayesian Methods
Author(s) -
Droumaguet Matthieu,
Warne Anders,
Woźniak Tomasz
Publication year - 2016
Publication title -
journal of applied econometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.878
H-Index - 99
eISSN - 1099-1255
pISSN - 0883-7252
DOI - 10.1002/jae.2531
Subject(s) - granger causality , econometrics , bayesian vector autoregression , inference , bayesian probability , markov chain , causality (physics) , bayesian inference , vector autoregression , computer science , economics , artificial intelligence , machine learning , physics , quantum mechanics
Summary In this paper, we derive restrictions for Granger noncausality in MS‐VAR models and show under what conditions a variable does not affect the forecast of the hidden Markov process. To assess the noncausality hypotheses, we apply Bayesian inference. The computational tools include a novel block Metropolis–Hastings sampling algorithm for the estimation of the underlying models. We analyze a system of monthly US data on money and income. The results of testing in MS‐VARs contradict those obtained with linear VARs: the money aggregate M1 helps in forecasting industrial production and in predicting the next period's state. Copyright © 2016 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom