Premium
ESTIMATION OF CENSORED PANEL‐DATA MODELS WITH SLOPE HETEROGENEITY
Author(s) -
Abrevaya Jason,
Shen Shu
Publication year - 2013
Publication title -
journal of applied econometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.878
H-Index - 99
eISSN - 1099-1255
pISSN - 0883-7252
DOI - 10.1002/jae.2325
Subject(s) - estimator , econometrics , covariate , portfolio , random effects model , panel data , statistics , mathematics , estimation , maximum likelihood , economics , variance (accounting) , medicine , meta analysis , management , accounting , financial economics
SUMMARY This paper considers estimation of censored panel‐data models with individual‐specific slope heterogeneity. The slope heterogeneity may be random (random slopes model) or related to covariates (correlated random slopes model). Maximum likelihood and censored least‐absolute deviations estimators are proposed for both models. The estimators are simple to implement and, in the case of maximum likelihood, lead to straightforward estimation of partial effects. The rescaled bootstrap suggested by Andrews ( Econometrica 2000; 68 : 399–405) is used to deal with the possibility of variance parameters being equal to zero. The methodology is applied to an empirical study of Dutch household portfolio choice, where the outcome variable (portfolio share in safe assets) has corner solutions at zero and one. As predicted by economic theory, there is strong evidence of correlated random slopes for the age profiles, indicating a heterogeneous age profile of portfolio adjustment that varies significantly with other household characteristics. Copyright © 2013 John Wiley & Sons, Ltd.