Premium
Steady‐state priors for vector autoregressions
Author(s) -
Villani Mattias
Publication year - 2009
Publication title -
journal of applied econometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.878
H-Index - 99
eISSN - 1099-1255
pISSN - 0883-7252
DOI - 10.1002/jae.1065
Subject(s) - prior probability , steady state (chemistry) , econometrics , bayesian probability , autoregressive model , cointegration , bayesian vector autoregression , computer science , vector autoregression , macro , economics , artificial intelligence , chemistry , programming language
Bayesian priors are often used to restrain the otherwise highly over‐parametrized vector autoregressive (VAR) models. The currently available Bayesian VAR methodology does not allow the user to specify prior beliefs about the unconditional mean, or steady state, of the system. This is unfortunate as the steady state is something that economists usually claim to know relatively well. This paper develops easily implemented methods for analyzing both stationary and cointegrated VARs, in reduced or structural form, with an informative prior on the steady state. We document that prior information on the steady state leads to substantial gains in forecasting accuracy on Swedish macro data. A second example illustrates the use of informative steady‐state priors in a cointegration model of the consumption‐wealth relationship in the USA. Copyright © 2009 John Wiley & Sons, Ltd.