
ON THE OBLIQUE ROTATION OF A FACTOR MATRIX TO A SPECIFIED PATTERN
Author(s) -
Browne Michael,
Kristof Walter
Publication year - 1967
Publication title -
ets research bulletin series
Language(s) - English
Resource type - Journals
eISSN - 2333-8504
pISSN - 0424-6144
DOI - 10.1002/j.2333-8504.1967.tb00706.x
Subject(s) - oblique case , factor (programming language) , rotation (mathematics) , oblique projection , similarity (geometry) , matrix (chemical analysis) , rotation matrix , mathematics , space (punctuation) , euler's rotation theorem , square matrix , geometry , computer science , artificial intelligence , physics , symmetric matrix , eigenvalues and eigenvectors , image (mathematics) , orthographic projection , philosophy , linguistics , materials science , operating system , composite material , quantum mechanics , programming language
This paper presents a procedure for rotating an arbitrary factor matrix to maximum similarity with a specified factor pattern. The sum of squared distances between specified vectors and rotated vectors in oblique Euclidian space is minimized. An example of the application of the procedure is given.