Premium
The Effects of Model Specification on Foreign Direct Investment Models: An Application of Count Data Models
Author(s) -
Tomlin KaSaundra M.
Publication year - 2000
Publication title -
southern economic journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.762
H-Index - 58
eISSN - 2325-8012
pISSN - 0038-4038
DOI - 10.1002/j.2325-8012.2000.tb00347.x
Subject(s) - specification , tobit model , count data , foreign direct investment , econometrics , poisson distribution , economics , statistics , statistical hypothesis testing , mathematics , macroeconomics
Previous studies have drawn a theoretical and empirical connection between foreign direct investment (FDI) and exchange rates using continuous measures of FDI. However, FDI data are often in discrete count form. I take a representative study of the FDI/exchange rate relationship by Jose M. Campa (1993), and I analyze the sensitivity of the results to specification of the dependent variable. Whereas Campa uses a Tobit specification, I use a count data specification to model counts of FDI occurrences. Using data on FDI in the United States from 1982 to 1993, controlling for the traditional determinants of FDI, I find that the results are sensitive across specifications. Significance levels and the magnitude of the coefficients change when going from a continuous Tobit specification to a zero inflated Poisson (ZIP) model designed for count data. Formal statistical testing finds that the ZIP specification likely models the data most properly. Thus, I indicate that misspecification bias from modeling discrete data with continuous distributions is important.