z-logo
Premium
Engineering Education and the Development of Expertise
Author(s) -
Litzinger Thomas,
Lattuca Lisa R.,
Hadgraft Roger,
Newstetter Wendy
Publication year - 2011
Publication title -
journal of engineering education
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.896
H-Index - 108
eISSN - 2168-9830
pISSN - 1069-4730
DOI - 10.1002/j.2168-9830.2011.tb00006.x
Subject(s) - engineering education , engineering , construct (python library) , engineering ethics , state (computer science) , pedagogy , higher education , sociology , political science , engineering management , computer science , algorithm , law , programming language
C ontributors Michael Alley, The Pennsylvania State University; Cindy Atman, University of Washington; David DiBiasio, Worcester Polytechnic Institute; Cindy Finelli, University of Michigan; Heidi Diefes‐Dux, Purdue University; Anette Kolmos, Aalborg University; Donna Riley, Smith College; Sheri Sheppard, Stanford University; Maryellen Weimer, The Pennsylvania State University; Ken Yasuhara, University of Washington B ackground Although engineering education has evolved in ways that improve the readiness of graduates to meet the challenges of the twenty‐first century, national and international organizations continue to call for change. Future changes in engineering education should be guided by research on expertise and the learning processes that support its development. P urpose The goals of this paper are: to relate key findings from studies of the development of expertise to engineering education, to summarize instructional practices that are consistent with these findings, to provide examples of learning experiences that are consistent with these instructional practices, and finally, to identify challenges to implementing such learning experiences in engineering programs. S cope /M ethod The research synthesized for this article includes that on the development of expertise, students' approaches to learning, students' responses to instructional practices, and the role of motivation in learning. In addition, literature on the dominant teaching and learning practices in engineering education is used to frame some of the challenges to implementing alternative approaches to learning. C onclusion Current understanding of expertise, and the learning processes that develop it, indicates that engineering education should encompass a set of learning experiences that allow students to construct deep conceptual knowledge, to develop the ability to apply key technical and professional skills fluently, and to engage in a number of authentic engineering projects. Engineering curricula and teaching methods are often not well aligned with these goals. Curriculum‐level instructional design processes should be used to design and implement changes that will improve alignment.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here