Premium
TOC removal in biological filters
Author(s) -
Hozalski Raymond M.,
Goel Sudha,
Bouwer Edward J.
Publication year - 1995
Publication title -
journal ‐ american water works association
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.466
H-Index - 74
eISSN - 1551-8833
pISSN - 0003-150X
DOI - 10.1002/j.1551-8833.1995.tb06464.x
Subject(s) - biofilter , total organic carbon , organic matter , chemistry , biodegradation , environmental chemistry , ozone , pulp and paper industry , environmental science , waste management , environmental engineering , organic chemistry , engineering
Optimizing the coagulant dosage offers the most effective means of maximizing TOC removal; biofiltration may be used to augment removals. Laboratory‐scale biologically active sand filters were used to evaluate the effect of natural organic matter (NOM) source and empty bed contact time (EBCT) on the removal of total organic carbon (TOC) from coagulated and ozonated NOM solutions. Ozonation at dosages in the range of 2.0 to 4.0 mg ozone/mg TOC were used to enhance biodegradation of the organic matter. TOC removal in the biofilters ranged from 16 to 33 percent of the biofilter influent concentration. TOC removal was significantly affected by the source of the organic carbon but was independent of EBCT in the range of 4 to 20 min. In the context of an entire water treatment plan, including coagulation and biofiltration, the contribution of biofiltration to TOC removal was relatively small compared with total removals across the entire treatment train. In one biofiltration experiment, however, removal of the biodegradable fraction of TOC was 100 percent, suggesting that biofilters may be effective in reducing subsequent regrowth in distribution systems.