z-logo
Premium
Effect of oxygen availability and salinity on EARLY LIFE HISTORY STAGES OF SALT MARSH PLANTS. I. Different germination strategies of Spartina alterniflora and Phragmites australis (Poaceae)
Author(s) -
Wijte Antonia H. B. M.,
Gallagher John L.
Publication year - 1996
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.1002/j.1537-2197.1996.tb13919.x
Subject(s) - spartina alterniflora , phragmites , salinity , germination , salt marsh , halophyte , biology , shoot , botany , spartina , marsh , wetland , ecology
Gradients in oxygen availability and salinity are among the most important environmental parameters influencing zonation in salt marsh communities. The combined effects of oxygen and salinity on the germination of two salt marsh grasses, Spartina alterniflora and Phragmites australis , were studied in growth chamber experiments. Germination of both species was initiated by emergence of the shoot and completed by root emergence. Percentage S. alterniflora germination was reduced at high salinity (40 g NaCl/L) and in decreased oxygen (5 and 2.5%). In 0% oxygen shoots emerged, but roots did not. P. australis germination was reduced at a lower salinity (25 g NaCl/L) than S. alterniflora , and inhibited at 40 g NaCl/L and in anoxia. However, a combination of hypoxia (10 and 5% O2) and moderate salinity (5 and 10 g NaCl/L) increased P. australis germination. When bare areas in the salt marsh are colonized, the different germination responses of these two species to combinations of oxygen and salt concentrations are important in establishing their initial zonation. In high salinity wetlands S. alterniflora populates the lower marsh and P. australis occupies the high marsh at the upland boundary.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here