Premium
INVITED SPECIAL PAPER: The hows and whys of cytoplasmic inheritance in seed plants
Author(s) -
Mogensen H. Lloyd
Publication year - 1996
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.1002/j.1537-2197.1996.tb12718.x
Subject(s) - extranuclear inheritance , plastid , biology , non mendelian inheritance , inheritance (genetic algorithm) , mitochondrial dna , genetics , organelle , nuclear gene , evolutionary biology , gene , chloroplast
Cytoplasmic organelles are inherited in a nonMendelian fashion in all eukaryotic organisms investigated. Among the seed plants, plastids can be inherited strictly from the female parent, strictly from the male parent, or biparentally. Most flowering plants studied to date exhibit maternal plastid inheritance, but approximately one‐third of the genera investigated display biparental plastid inheritance to some degree. Among the gymnosperms, paternal plastid inheritance is the rule in the conifers, whereas the other groups appear to have maternal plastid inheritance, although they have been less well studied. Mitochondrial inheritance is predominantly maternal in the seed plants, except for a few coniferous families where it is predominantly paternal. The advent of recombinant DNA technology has allowed restriction fragment length polymorphisms to be used as molecular markers, and has stimulated much research in organelle inheritance and its application to studies of population genetics and phylogenetic biology. This report emphasizes the various mechanisms by which organelles are, or are not, transmitted among the seed plants in order that researchers directly or indirectly involved with organelle inheritance may better understand the potential and the limitations of their investigations. A summary and discussion of the possible evolutionary significance of the various patterns of cytoplasmic inheritance among the seed plants are also included.