z-logo
Premium
T he expression of andromonoecy in S olanum hirtum (S olanaceae): phenotypic plasticity and ontogenetic contingency
Author(s) -
Diggle Pamela K.
Publication year - 1994
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.1002/j.1537-2197.1994.tb11457.x
Subject(s) - biology , primordium , hermaphrodite , phenotypic plasticity , inflorescence , phenotype , meristem , evolutionary biology , genetics , botany , gene
Sex expression (the proportions of staminate and hermaphrodite flowers produced) in andromonoecious Solarium hirtum is phenotypically plastic, and there is genetic variation for sex expression plasticity. Changes in sex expression phenotype are inherently the result of altered development. However, the underlying developmental components of sex expression plasticity and of differences in plasticity among genotypes are unknown. This study takes an explicitly genetic and developmental approach to the study of phenotypic plasticity and examines changes in sex expression of ten clonally replicated genotypes at three levels of organization: among inflorescences, within inflorescences, and at the level of developing floral meristems. Changes in sex expression of individuals and differences among individuals are the result of a predictable interplay of resource, architectural, and floral level response within the hierarchical construction of the shoot system. Phenotypic plasticity of whole plant sex expression is ultimately due to sexual lability of individual developing flowers: floral sex is not determined until a primordium size of 9–10 mm. Until that time, sex expression remains labile and developing floral primordia can respond to changes in plant resource status. This flower level developmental lability, however, is expressed within the constraints set by the architecture and ontogenetic history of the organism. Only those floral primordia produced in distal portions of each inflorescence are labile, capable of developing into either a staminate or hermaphrodite flower, whereas those primordia in basal positions invariably develop as hermaphrodite flowers. The genotypes differ with respect to the architectural components of phenotypic plasticity and it is this architectural variation that results in differences in plasticity among genotypes. The phenomenon, in which the developmental fate of a primordium depends upon where and when it is produced within the architecture of an organism and what events have preceded it during ontogeny, can be termed “ontogenetic contingency.”

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here