Premium
POLYPLOIDY, DYSPLOIDY, AND CHROMOSOME PAIRING IN ECHEVERIA (CRASSULACEAE) AND ITS HYBRIDS
Author(s) -
Uhl Charles H.
Publication year - 1992
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.1002/j.1537-2197.1992.tb14593.x
Subject(s) - biology , ploidy , polyploid , hybrid , chromosome , genetics , karyotype , botany , gene
The 140+ species of Echeveria have more than 50 gametic chromosome numbers, including every number from 12 through 34 and polyploids to n = ca. 260. With related genera, they comprise an immense comparium of 200+ species that have been interconnected in cultivation by hybrids. Some species with as many as 34 gametic chromosomes include none that can pair with each other, indicating that they are effectively diploid, but other species with fewer chromosomes test as tetraploids. Most diploid hybrids form multivalents, indicating that many translocations have rearranged segments of the chromosomes. Small, nonessential chromosomal remnants can be lost, lowering the number and suggesting that higher diploid numbers ( n = 30–34) in the long dysploid series are older. These same numbers are basic to most other genera in the comparium ( Pachyphytum, Graptopetalum, Sedum section Pachysedum), and many diploid intergeneric hybrids show very substantial chromosome pairing. Most polyploid hybrids here are fertile, even where the parents belong to different genera and have very different chromosome numbers. This seems possible only if corresponding chromosomes from a polyploid parent pair with each other preferentially, strong evidence for autopolyploidy. High diploid numbers here may represent old polyploids that have become diploidized by loss, mutation, or suppression of duplicate genes, but other evidence for this is lacking. Most species occur as small populations in unstable habitats in an area with a history of many rapid climatic and geological changes, presenting a model for rapid evolution.