z-logo
Premium
BIOMECHANICS OF CLADODES AND CLADODE‐CLADODE JUNCTIONS FOR OPUNTIA FICUS‐INDICA (CACTACEAE)
Author(s) -
Nobel Park S.,
Meyer Richard W.
Publication year - 1991
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.1002/j.1537-2197.1991.tb11418.x
Subject(s) - cladodes , biology , botany , cactus
Shoots of Opuntia ficus‐indica (L.) Miller consist of a sequence of flattened stem segments (cladodes) in contact over only a small portion of their periphery. The maximum angular deflection for an upper terminal cladode under a weight equal to its own fresh mass applied perpendicular to its face increased from 5° to 9° as cladode length increased from 20 cm to 60 cm, consistent with an increase in mass proportional to length 2.83 . Just over half of the angular deflection of an upper cladode represented flexure of the cladode‐cladode junction; the angular deflections averaged fourfold more for mass loadings perpendicular to the cladode face compared with those parallel to it. Compared with such static loading by mass, dynamic loading by wind for a 31‐cm‐long cladode led to a maximum angular deflection of only 0.13° at a wind speed of 1 m sec −1 and 2.3° at 10 m sec −1 . Drought caused the angular deflections to increase 9% for 21‐cm‐long cladodes over a 90‐day period and to decrease 45% for 44‐cm‐long cladodes. Increases in stem temperature from 0 C to 20 C increased angular deflections of a 27‐cm‐long cladode about 10%, with little further increase up to 50 C. Even though the cladodes were thin compared with stems of many perennials and the cladode‐cladode junction comprised only about 3.5% of their peripheral area, the shoots of O. ficus‐indica proved to be quite rigid, as angular deflections of cladodes were only slightly influenced by temperature and wind, were not markedly enhanced by drought, and were less than 10° under loading by a cladode's mass.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here