Premium
ON THE MECHANISM OF DECUSSATE PHYLLOTAXIS: BIOPHYSICAL STUDIES ON THE TUNICA LAYER OF VINCA MAJOR
Author(s) -
Jesuthasan Suresh,
Green Paul B.
Publication year - 1989
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.1002/j.1537-2197.1989.tb15099.x
Subject(s) - dome (geology) , phyllotaxis , tunica , biology , rosette (schizont appearance) , anatomy , biophysics , botany , meristem , paleontology , shoot , immunology
Phyllotaxis theory typically assumes that an acropetal influence from recently formed leaves acts on the apical dome to initiate new leaves. Biophysical theory postulates that established plant organs elongate because their primary walls, particularly those in the organ surface layer, are transversely reinforced by cellulose to give the organ overall hoop reinforcement. These two postulates are combined here in a biophysical theory for phyllotaxis. The essential acropetal influence from young leaves is proposed to be the stretching of the adjacent dome tissue by the growth of leaf bases. Cytoskeletal responses on the dome produce reinforcement patterns which initiate new hoop reinforced leaves. Growth of these leaves remodels the dome for the next round of organs. Data pertinent to this theory are presented here for Vinca major. The surface (tunica) layer of the apical dome was isolated by paradermal cuts. Using polarized light, the cellulose alignment in this surface layer was determined, cell by cell, for various stages of the plastochron. The growing dome is typically elliptical, with the major axis shifting by 90° during each plastochron. The periphery of the dome always has cellulose oriented parallel to its margin; the central region, when the major axis is pronounced, has reinforcement normal to this axis. During the plastochron this reinforcement pattern is modified, by plausible biophysical mechanisms, to account for the three major activities of the dome: 1) production of a hoop‐reinforced leaf at each end of the ellipse, 2) formation of a hoop‐reinforced stem segment, 3) revision of dome structure to produce the same initial reinforcement pattern as at the start of the plastochron, but at 90°.