z-logo
Premium
FEMALE FREQUENCIES IN GYNODIOECIOUS POPULATIONS CORRELATED WITH SELFING RATES IN HERMAPHRODITES
Author(s) -
Sun M.,
Ganders Fred R.
Publication year - 1986
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.1002/j.1537-2197.1986.tb10917.x
Subject(s) - gynodioecy , selfing , biology , inbreeding depression , outcrossing , inbreeding , obligate , hermaphrodite , zoology , ecology , pollen , population , dioecy , demography , sociology
Gynodioecious populations consist of separate hermaphroditic and female individuals. Females are at a selective disadvantage because they contribute genes to the next generation only through ovules, while hermaphrodites contribute genes through ovules and pollen. For females to be maintained in populations they must have some compensating selective advantage. The outcrossing hypothesis postulates that females are maintained because their progeny result from obligate outcrossing, whereas some of the progeny of hermaphrodites result from self‐fertilization and are less fit because of inbreeding depression. If correct, the frequency of females should be positively correlated with selfing rates of hermaphrodites in populations. We found a strong positive correlation between female frequency and selfing rates of hermaphrodites ( r = 0.91, P < 0.01) in eight gynodioecious populations of Hawaiian species of Bidens. Our results confirm that the obligate outcrossing of females is a major factor maintaining females in gynodioecious populations. However, the observed selfing rates are insufficient by themselves to account for the frequency of females in these populations.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here