z-logo
Premium
REPRODUCTIVE ECOLOGY OF JEFFERSONIA DIPHYLLA (BERBERIDACEAE)
Author(s) -
Ronsheim Margaret L.,
Swartz Kathryn R.
Publication year - 1986
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.1002/j.1537-2197.1986.tb10887.x
Subject(s) - biology , seed predation , ovule , seed dispersal , predation , botany , seedling , biological dispersal , fruit set , rhizome , horticulture , ecology , population , pollen , pollination , demography , sociology
The reproductive ecology of Jeffersonia diphylla (L.) Pers. (Berberidaceae) was investigated by studying its breeding system, ovule production, seed set, seed dispersal by ants and seed predation by rodents. This species flowers early in the spring and is facultatively autogamous. In a typical year fruit and seed set is high (90%), however, freezing temperatures from late spring frosts in 1983 and 1985 resulted in low fruit set (7% and 20%, respectively), and reduced seed set in those flowers that produced fruit. No differences in seed set between selfed and outcrossed flowers were observed over a two‐yr period (1983–84). Ovule number per capsule increased with plant size as measured by leaf number. Seed set and seed wt were unaffected by leaf number unless leaves were removed after flowering was initiated. Jeffersonia diphylla is myrmecochorous. Ants removed seeds faster when seeds were placed in areas where J. diphylla plants were absent, suggesting that dispersal within J. diphylla populations is ant limited. Moreover, fresh (1 day old) seeds were removed by ants faster than 3 day old seeds. Seed predation by rodents prior to dehiscence from capsules is heavy in large populations (85–90%), and apparently negligible in small populations. Predation of seeds that are released from capsules is heavy (approx. 66%), particularly at night. Overall, seed predators consume about 96% of the seed crop in well established populations, but probably much less in small young populations. Hence, seedling recruitment is likely to be higher in small populations, whereas ramet production from rhizomes is the primary mode of propagation in large ones. The evolution of autogamy, early flowering, and myrmecochory are discussed in light of the results of this study.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here