Premium
BASIDIOSPOROGENESIS IN BOLETUS RUBINELLUS. I. STERIGMAL INITIATION AND EARLY SPORE DEVELOPMENT
Author(s) -
Yoon Kwon S.,
McLaughlin David J.
Publication year - 1984
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.1002/j.1537-2197.1984.tb12488.x
Subject(s) - basidiospore , spore , biology , primordium , hypha , vesicle , apex (geometry) , cytoplasm , spore germination , botany , microbiology and biotechnology , biochemistry , membrane , gene
Sterigmal initiation in Boletus rubinellus resembled hyphal tip growth. Four stages in early basidiospore development have been delineated based on gross morphology, and changes in wall layers and cytoplasm. Changes in wall layers and cytoplasm during spore development were stage‐specific. During Stage 1 the spore wall consisted of two layers identical to those of the sterigmal wall with occasional pellicle remnants on the outer surface. The onset of wall differentiation began in Stage 2, and during Stage 3 wall layers characteristic of the mature spore developed. At Stage 4 there was a pronounced gradient in wall thickness from the apex to the base of the spore. Small vesicles (30–60 nm diam) were uniformly distributed in the cytoplasm of spherically enlarging spores (Stage 2), but during spore elongation (Stages 3 and 4) numerous larger vesicles as well as small vesicles aggregated at the spore apex. A variety of cytoplasmic organelles entered the spore during Stage 3; however, migration of storage materials and the nucleus to the spore did not occur until late basidiospore development. The hilar appendix body developed in the earliest spore primordium and persisted until Stage 3. Development of wall layers and their differential thickening, distribution of vesicles, and probable function of the hilar appendix body are discussed with reference to the control of spore shape. Systematic implications of the data are considered.