Premium
A MORPHOMETRIC ANALYSIS OF CELLULAR DIFFERENTIATION IN THE ROOT CAP OF ZEA MAYS
Author(s) -
Moore Randy,
McClelen C. Edward
Publication year - 1983
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.1002/j.1537-2197.1983.tb07889.x
Subject(s) - ultrastructure , biology , root cap , columella , plastid , microbiology and biotechnology , amyloplast , organelle , cytoplasm , botany , nucleus , anatomy , meristem , chloroplast , biochemistry , shoot , gene , nose
In order to quantify the ultrastructural changes associated with cellular differentiation, we have performed a morphometric analysis of the ultrastructure of the calyptrogen, columella, and peripheral cells of the root cap of Zea mays . The relative volumes of the nucleus, nucleolus, and mitochondria in the protoplasm gradually decrease as a cell moves through the root cap. The relative volume of plastids increases 240% during the differentiation of calyptrogen cells into columella cells. This increase is transient, however, since the relative volume of plastids as well as starch in plastids decreases markedly as columella cells differentiate into peripheral cells. Dictyosomes and spherosomes increase more gradually than plastids, peaking in relative volume in the innermost peripheral cells (PCI). The relative volume of the vacuome decreases as calyptrogen cells differentiate into columella cells, after which it increases during the differentiation of peripheral cells. By the time the outermost peripheral cells (PCIII) are sloughed from the cap, the relative volume of the vacuome has almost tripled. These results indicate that each cell type comprising the root cap of Zea mays is characterized by a distinctive ultrastructure. Furthermore, the ultrastructural changes associated with the differentiation of these cells are organelle specific. The results of this study are discussed relative to the function of the various cell types of the root cap.