Premium
TRANSFORMATION OF THE NUCLEUS IN MARCHANTIA SPERMATIDS: MORPHOGENESIS
Author(s) -
Kreitner Gerald L.
Publication year - 1977
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.1002/j.1537-2197.1977.tb12370.x
Subject(s) - nucleus , spermatid , biology , chromatin , cytoplasm , microtubule , microbiology and biotechnology , anatomy , biophysics , botany , genetics , dna , sperm
It is proposed that elongation of the nucleus in spermatids of Marchantia results from interaction between its membranous envelope and microtubules of the spermatid's cytoskeleton. The nucleus may be drawn out in two directions along microtubules until forces attracting the nucleus to them are balanced by forces resisting envelope distortion. Condensation of nuclear chromatin into fibrils of uniform diameter and probable shaping of the nucleus by blebbing of its envelope occur together before elongation is complete. The nucleus becomes crescent shaped and it is prolonged distally into a chromatin‐free diverticulum. In accord with their distribution along the axis of the nucleus, chromatin fibrils are compacted together forming a cone‐like rod of chromatin which narrows anteriorly and extends distally to the tip of the preexisting diverticulum. Elongation and shaping of the nucleus influence the distribution of its chromatin and thus its ultimate morphology. Coiling of the nucleus is related to a reduction of spermatid cytoplasm during maturation.