Premium
UNUSUAL CYTOLOGICAL PATTERNS IN MICROSPOROGENESIS AND POLLEN DEVELOPMENT OF EVOLUTIONARY SIGNIFICANCE IN THE MIMULUS GLABRATUS COMPLEX (SCROPHULARIACEAE)
Author(s) -
Tai William,
Vickery Robert K.
Publication year - 1972
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.1002/j.1537-2197.1972.tb10122.x
Subject(s) - biology , scrophulariaceae , hybrid , pollen , ploidy , botany , chromosome , meiosis , polyploid , evolutionary biology , genetics , gene
Four populations of Mimulus glabratus var. utahensis Pennell from the Great Basin and seven of M. glabratus var. fremontii (Bentham) Grant from the New Mexico–Texas–northeastern Mexico area were intercrossed and their F 1 hybrids grown. Cytology and fertility of both the parental populations and the F 1 hybrids were studied. The following cytological abnormalities were observed in microsporogenesis: cytomixis, the stretching of one or more chromosomes from cell to cell; multipolar divisions, separation of the chromosome complement into two or more parts; unequal disjunction; spontaneous polyploidization; and the production of encapsulated pollen tetrads. Typically, these abnormalities were rare or not observed in the parents, were rare in the intravarietal hybrids, but were more common in the intervarietal hybrids. They were closely associated with, in fact were the probably causes of, barriers to gene exchange between these two diploid (n = 15) varieties. Thus, the apparent causes of barriers to gene exchange in intervarietal hybrids are the likely mechanisms for the evolution of aneuploidy and polyploidy so characteristic of the rest of the Mimulus glabratus complex.