Premium
ANTHOCYANIN SYNTHESIS IN SALPIGLOSSIS SINUATA
Author(s) -
Miller John H.,
Miller Pauline M.,
Deal Robert H.
Publication year - 1967
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.1002/j.1537-2197.1967.tb10748.x
Subject(s) - anthocyanin , anthocyanidins , anthocyanidin , pigment , biology , delphinidin , cyanidin , malvidin , botany , peonidin , darkness , biological pigment , horticulture , chlorophyll , flavonoid , chemistry , biochemistry , organic chemistry , antioxidant
Measurements were made of the growth and pigment content of developing flower buds of Salpiglossis sinuata. From the time the buds were approximately 10 mm long they grew in length exponentially until they reached their final length. The logarithm of bud length increased linearly with time and served as a convenient morphological index on which to relate the progress of anthocyanin synthesis. Buds shorter than about 42 mm had no anthocyanin, but when buds reached this length, anthocyanin production was initiated and proceeded rapidly. The maximum relative pigment concentration (pigment/mg fresh weight) was attained by the buds about 17 hr after the initiation of pigment synthesis. In the mahogany‐colored variety used in these studies, two anthocyanidins were found and identified as cyanidin and delphinidin. Buds excised from the plants could be cultured in vitro. Buds started in culture at a length of 30–35 mm when they contained no anthocyanins developed pigment during their growth. The amount of pigment formed increased with increasing light intensity, while only small amounts of pigment could be formed in buds cultured in darkness. The anthocyanidins of these cultured buds were the same as those of the intact flowers, but the ratio of delphinidin to cyanidin decreased with decreasing light intensity. Brief daily irradiation of dark‐grown buds with red, far‐red or blue light did not increase pigment synthesis nor change the anthocyanidin ratio. If buds were placed in culture at 20–25 mm and grown in darkness, they developed a third anthocyanidin, identified as malvidin, which was not present in intact flowers, light‐grown buds or 30–35‐mm buds cultured in darkness.