z-logo
Premium
THE GROWTH OF THE STEM TIP OF KALANCHOËU CV . ‘ BRILLIANT STAR’
Author(s) -
Stein Diana B.,
Stein Otto L.
Publication year - 1960
Publication title -
american journal of botany
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.218
H-Index - 151
eISSN - 1537-2197
pISSN - 0002-9122
DOI - 10.1002/j.1537-2197.1960.tb07105.x
Subject(s) - primordium , apex (geometry) , biology , meristem , plant stem , botany , shoot , ontogeny , elongation , axillary bud , tunica , horticulture , tissue culture , biochemistry , genetics , materials science , ultimate tensile strength , gene , metallurgy , in vitro
S tein , D iana B. and o . L. S tein . (Montana State U., Missoula.) The growth of the stem tip of Kalanchoë cv. ‘Brilliant Star.‘ Amer. Jour. Bot. 47 (2) : 132—140. Illus. I960.–The purposes of this investigation were (1) to define as clearly as possible the events in the shoot apex and its immediate derivatives during the ontogeny of the shoot; and (2) to determine the changes which occur during the transition from a vegetative to a reproductive meristem. Rate of leaf production in Kalanchoë is basically constant. The rate of leaf growth subsequent to the early primordial state is, however, dependent on the age of the plant and on the environment in which the plant is grown. By keeping these factors constant a correlation can be demonstrated between the size of the youngest visible leaf and the microscopic primordia. Throughout its ontogeny the general architecture of the shoot apex remains essentially the same. Two tunica layers cover the corpus in the vegetative shoot apex, and even in the flowering meristem these 2 layers can be detected. The apex is essentially flat and blends into the adjacent leaf primordia early in the plastochron. About 10 days after flower induction has been started the apex changes its form to a dome, primarily by increased cell division. At the same time the rate of elongation of the youngest internodes increases thus placing the flowering stem tip atop an elongated stem. Axillary development is ultimately responsible for the development of a dichasium.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here