Premium
Uncoupling of transcription and translation during zygotic gene activation in the mouse.
Author(s) -
Nothias J. Y.,
Miranda M.,
DePamphilis M. L.
Publication year - 1996
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1002/j.1460-2075.1996.tb00955.x
Subject(s) - biology , microbiology and biotechnology
Zygotic gene expression in mice is delayed by a time‐dependent mechanism until the two‐cell stage in development. To investigate the basis of this ‘zygotic clock’, the firefly luciferase gene was injected into mouse embryos, and quantitative assays were used to monitor luciferase gene transcription and translation in individual embryos from single mothers. These studies confirmed, at the mRNA level, previous conclusions about the relative capacities of paternal and maternal pronuclei to transcribe genes, and the requirements for promoters and enhancers during zygotic gene activation. Furthermore, these studies revealed that fertilized mouse eggs can delay expression of zygotic genes by uncoupling translation from transcription. An RNA polymerase II‐dependent gene could be translated until zygotic gene expression began (a delay of up to 15 h after injection). The time course for nascent mRNA accumulation was biphasic, with the second phase occurring during zygotic gene expression. If the luciferase gene was injected after zygotic gene expression had begun, then translation was tightly linked to transcription. If the second phase of mRNA accumulation was repressed, then luciferase was not produced. Therefore, translation was linked to the accumulation of mRNA during the onset of zygotic gene expression. Similar biphasic time courses also were observed for RNA polymerase I‐ and III‐dependent transcription. These and other results reveal that the zygotic clock regulates the onset of both transcription and translation of zygotic genes.