z-logo
Premium
DNA binding of in vitro activated Stat1 alpha, Stat1 beta and truncated Stat1: interaction between NH2‐terminal domains stabilizes binding of two dimers to tandem DNA sites.
Author(s) -
Vinkemeier U.,
Cohen S. L.,
Moarefi I.,
Chait B. T.,
Kuriyan J.,
Darnell J. E.
Publication year - 1996
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1002/j.1460-2075.1996.tb00946.x
Subject(s) - biology , dna , dna binding protein , in vitro , binding site , plasma protein binding , microbiology and biotechnology , alpha (finance) , biochemistry , transcription factor , gene , medicine , construct validity , nursing , patient satisfaction
Stat1 alpha, Stat1 beta and a proteolytically defined truncated Stat1 (132–713, Stat1tc) have been prepared from recombinant sources. All three proteins were specifically phosphorylated on Tyr701 in vitro and the phosphoprotein purified to homogeneity. This was achieved by employing a new isolation scheme that does not include DNA affinity steps and readily allows for the isolation of tens of milligrams of activated Stat protein. The purified phosphoprotein was free of traces of unphosphorylated polypeptide as detected by mass spectrometry. The phosphorylated Stat1 preparations bound to various DNA recognition sites with the same Keq of approximately 1 × 10(‐9) M; distinction between ‘weak’ and ‘strong’ binding sites is determined by the very rapid dissociation (< 30 s, t1/2) from ‘weak’ sites compared with ‘strong’ sites (approximately 3 min, t1/2). Reports of ‘weak’ tandem binding sites in a natural gene caused us to examine binding to tandem sites leading to the finding that the Stat1 alpha or beta (38 amino acids shorter on the C terminus) bound to two tandem sites (but not two head‐to‐head sites) with a higher stability than to a single recognition site. The N‐terminally truncated protein Stat1tc did not show this cooperative binding, thus implicating the N‐terminal domain in promoting Stat1‐Stat1 dimer interaction.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here