z-logo
Premium
The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli.
Author(s) -
Sledjeski D. D.,
Gupta A.,
Gottesman S.
Publication year - 1996
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1002/j.1460-2075.1996.tb00773.x
Subject(s) - rpos , biology , sigma factor , gene expression , transcription (linguistics) , genetics , rna , lac operon , gene , microbiology and biotechnology , promoter , linguistics , philosophy
dsrA encodes a small, untranslated RNA. When over‐expressed, DsrA antagonizes the H‐NS‐mediated silencing of numerous promoters. Cells devoid of DsrA grow normally and show little change in the expression of a number of H‐NS‐silenced genes. Expression of a transcriptional fusion of lacZ to dsrB, the gene next to dsrA, is significantly lower in cells carrying mutations in dsrA. All expression of beta‐galactosidase from the dsrB::lacZ fusion is also dependent on the stationary phase sigma factor, RpoS. DsrA RNA was found to regulate dsrB::lacZ indirectly, by modulating RpoS synthesis. Levels of RpoS protein are substantially lower in a dsrA mutant, both in stationary and exponential phase cells. Mutations in dsrA decrease the expression of an RpoS::LacZ translational fusion, but not a transcriptional fusion, suggesting that DsrA is acting after transcription initiation. While RpoS expression is very low in exponential phase at temperatures of 30 degrees C and above, at 20 degrees C there is substantial synthesis of RpoS during exponential growth, all dependent on DsrA RNA. dsrA expression is also increased at low temperatures. These results suggest a new role for RpoS during exponential growth at low temperatures, mediated by DsrA.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here