z-logo
Premium
Propagation of the yeast prion‐like [psi+] determinant is mediated by oligomerization of the SUP35‐encoded polypeptide chain release factor.
Author(s) -
Paushkin S. V.,
Kushnirov V. V.,
Smirnov V. N.,
TerAvanesyan M. D.
Publication year - 1996
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1002/j.1460-2075.1996.tb00675.x
Subject(s) - biology , yeast , release factor , chain (unit) , saccharomyces cerevisiae , polypeptide chain , biochemistry , genetics , microbiology and biotechnology , gene , rna , enzyme , transfer rna , physics , astronomy
The Sup35p protein of yeast Saccharomyces cerevisiae is a homologue of the polypeptide chain release factor 3 (eRF3) of higher eukaryotes. It has been suggested that this protein may adopt a specific self‐propagating conformation, similar to mammalian prions, giving rise to the [psi+] nonsense suppressor determinant, inherited in a non‐Mendelian fashion. Here we present data confirming the prion‐like nature of [psi+]. We show that Sup35p molecules interact with each other through their N‐terminal domains in [psi+], but not [psi‐] cells. This interaction is critical for [psi+] propagation, since its disruption leads to a loss of [psi+]. Similarly to mammalian prions, in [psi+] cells Sup35p forms high molecular weight aggregates, accumulating most of this protein. The aggregation inhibits Sup35p activity leading to a [psi+] nonsense‐suppressor phenotype. N‐terminally altered Sup35p molecules are unable to interact with the [psi+] Sup35p isoform, remain soluble and improve the translation termination in [psi+] strains, thus causing an antisuppressor phenotype. The overexpression of Hsp104p chaperone protein partially solubilizes Sup35P aggregates in the [psi+] strain, also causing an antisuppressor phenotype. We propose that Hsp104p plays a role in establishing stable [psi+] inheritance by splitting up Sup35p aggregates and thus ensuring equidistribution of the prion‐like Sup35p isoform to daughter cells at cell divisions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here