z-logo
Premium
Sphingosine‐1‐phosphate rapidly induces Rho‐dependent neurite retraction: action through a specific cell surface receptor.
Author(s) -
Postma F. R.,
Jalink K.,
Hengeveld T.,
Moolenaar W. H.
Publication year - 1996
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1002/j.1460-2075.1996.tb00595.x
Subject(s) - biology , sphingosine 1 phosphate , cell division , cancer cell , cancer , biochemistry , library science , sphingosine , receptor , cell , genetics , computer science
Sphingosine‐1‐phosphate (S1P) is a bioactive lysosphingolipid implicated in mitogenesis and cytoskeletal remodelling, but its mechanism of action is poorly understood. We report here that in N1E‐115 neuronal cells, S1P mimics the G protein‐coupled receptor agonist lysophosphatidic acid (LPA) in rapidly inducing neurite retraction and soma rounding, a process driven by Rho‐dependent contraction of the actin cytoskeleton. S1P is approximately 100‐fold more potent than LPA in evoking these shape changes, with an EC50 as low as 1.5 nM. Microinjection of S1P has no effect, neither has addition of sphingosine or ceramide. As with LPA, S1P action is inhibited by suramin and subject to homologous desensitization; however, the responses to S1P and LPA do not show cross‐desensitization. We conclude that S1P activates its own high affinity receptor to trigger Rho‐regutated cytoskeletal events. Thus, S1P and LPA may belong to an emerging family of bioactive lysophospholipids that act through distinct G protein‐coupled receptors to mediate similar actions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here