Premium
The Holliday junction intermediates of lambda integrative and excisive recombination respond differently to the bending proteins integration host factor and excisionase.
Author(s) -
Franz B.,
Landy A.
Publication year - 1995
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1002/j.1460-2075.1995.tb07014.x
Subject(s) - holliday junction , biology , recombination , lambda , host (biology) , host factor , genetics , bending , computational biology , dna , gene , physics , optics , thermodynamics
In lambda site‐specific recombination, the integrative and excisive reactions proceed via two different Holliday junction intermediates, both of which are generated and resolved by a pair of sequentially ordered single strand exchanges. Factors affecting the directionality and efficiency of the second pair of strand exchanges were examined using artificial Holliday junctions (chi‐forms). The integrative and excisive recombination intermediates respond differently to the accessory DNA bending proteins integration host factor and excisionase (Xis). These differences between the two recombination intermediates result from a different interaction pattern between proteins binding to the left (P arm) and right (P’ arm) of the crossover region. The effect of Xis protein on the directionality of resolution, i.e. the choice of which strands are exchanged, is consistent with a role in promoting the second strand exchange during excision. Proteins binding to the left of the crossover region (P arm) primarily influence the directionality of resolution, while proteins binding to the right (P’ arm) have a greater effect on the overall efficiency of resolution. Together, the effect of proteins binding to sites in the P and P’ arms is to greatly enhance resolution of the two different Holliday intermediates and to favor resolution in the ‘forward’ direction for both integrative and excisive recombination.