z-logo
Premium
A new class of DNA photolyases present in various organisms including aplacental mammals.
Author(s) -
Yasui A.,
Eker A.P.,
Yasuhira S.,
Yajima H.,
Kobayashi T.,
Takao M.,
Oikawa A.
Publication year - 1994
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1002/j.1460-2075.1994.tb06961.x
Subject(s) - photolyase , biology , gene , eukaryote , pyrimidine dimer , genetics , homology (biology) , escherichia coli , dna , biochemistry , dna repair , microbiology and biotechnology , genome
DNA photolyase specifically repairs UV light‐induced cyclobutane‐type pyrimidine dimers in DNA through a light‐dependent reaction mechanism. We have obtained photolyase genes from Drosophila melanogaster (fruit fly), Oryzias latipes (killifish) and the marsupial Potorous tridactylis (rat kangaroo), the first photolyase gene cloned from a mammalian species. The deduced amino acid sequences of these higher eukaryote genes show only limited homology with microbial photolyase genes. Together with the previously cloned Carassius auratus (goldfish) gene they form a separate group of photolyase genes. A new classification for photolyases comprising two distantly related groups is proposed. For functional analysis P.tridactylis photolyase was expressed and purified as glutathione S‐transferase fusion protein from Escherichia coli cells. The biologically active protein contained FAD as light‐absorbing cofactor, a property in common with the microbial class photolyases. Furthermore, we found in the archaebacterium Methanobacterium thermoautotrophicum a gene similar to the higher eukaryote photolyase genes, but we could not obtain evidence for the presence of a homologous gene in the human genome. Our results suggest a divergence of photolyase genes in early evolution.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here