z-logo
Premium
Correlation between the structure and biochemical activities of FtsA, an essential cell division protein of the actin family.
Author(s) -
Sánchez M.,
Valencia A.,
Ferrándiz M.J.,
Sander C.,
Vicente M.
Publication year - 1994
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1002/j.1460-2075.1994.tb06819.x
Subject(s) - biology , protein family , correlation , cell division , genetics , division (mathematics) , actin , cell cycle protein , microbiology and biotechnology , cell , cell cycle , gene , geometry , mathematics , arithmetic
Cell division protein FtsA, predicted to belong to the actin family, is present in different cell compartments depending on its phosphorylation state. The FtsA fraction isolated from the cytoplasm is phosphorylated and capable of binding ATP, while the membrane‐bound form is unphosphorylated and does not bind ATP. A variant of the protein FtsA102, in which the nucleotide binding site was destroyed by mutagenesis of a highly conserved residue predicted to be needed for the binding, does not bind ATP. Another variant, FtsA104, cannot be phosphorylated because the predicted phosphorylatable residue has been replaced by a non‐phosphorylatable one. This protein although unable to bind ATP in vitro, is able to rescue the reversible ftsA2, the irreversible ftsA3 and, almost with the same efficiency, the ftsA16 amber alleles. Consequently, phosphorylation and ATP binding may not be essential for the function of FtsA. Alternatively they may have a regulatory role on the action of FtsA in the septator.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here