Premium
Functional expression of a rat homologue of the voltage gated either á go‐go potassium channel reveals differences in selectivity and activation kinetics between the Drosophila channel and its mammalian counterpart.
Author(s) -
Ludwig J.,
Terlau H.,
Wunder F.,
Brüggemann A.,
Pardo L.A.,
Marquardt A.,
Stühmer W.,
Pongs O.
Publication year - 1994
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1002/j.1460-2075.1994.tb06767.x
Subject(s) - biology , humanities , art
We have cloned a mammalian (rat) homologue of Drosophila ether á go‐go (eag) cDNA, which encodes a distinct type of voltage activated potassium (K) channel. The derived Drosophila and rat eag polypeptides share > 670 amino acids, with a sequence identity of 61%, exhibiting a high degree of similarity at the N‐terminus, the hydrophobic core including the pore forming P region and a potential cyclic nucleotide binding site. Rat eag mRNA is specifically expressed in the central nervous system. In the Xenopus oocyte expression system rat eag mRNA gives rise to voltage activated K channels which have distinct properties in comparison with Drosophila eag channels and other voltage activated K channels. Thus, the rat eag channel further extends the known diversity of K channels. Most notably, the kinetics of rat eag channel activation depend strongly on holding membrane potential. Hyperpolarization slows down the kinetics of activation; conversely depolarization accelerates the kinetics of activation. This novel K channel property may have important implications in neural signal transduction allowing neurons to tune their repolarizing properties in response to membrane hyperpolarization.