z-logo
Premium
Neuronal differentiation signals are controlled by nerve growth factor receptor/Trk binding sites for SHC and PLC gamma.
Author(s) -
Obermeier A.,
Bradshaw R.A.,
Seedorf K.,
Choidas A.,
Schlessinger J.,
Ullrich A.
Publication year - 1994
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1002/j.1460-2075.1994.tb06421.x
Subject(s) - trk receptor , biology , microbiology and biotechnology , tropomyosin receptor kinase a , neurotrophin , nerve growth factor , receptor tyrosine kinase , phospholipase c , proto oncogene tyrosine protein kinase src , signal transduction , tropomyosin receptor kinase c , low affinity nerve growth factor receptor , tyrosine phosphorylation , receptor , platelet derived growth factor receptor , biochemistry , growth factor
Differentiation and survival of neuronal cell types requires the action of neurotrophic polypeptides such as nerve growth factor (NGF). In the central and peripheral nervous system and the phaeochromocytoma cell model PC12, NGF exerts its effects through the activation of the signalling capacity of Trk, a receptor tyrosine kinase (RTK) which upon interaction with NGF becomes phosphorylated on tyrosines and thereby acquires the potential to interact with signal‐transducing proteins such as phospholipase C‐gamma (PLC gamma), phosphatidylinositol‐3′‐kinase (PI3′‐K) and SHC. Mutagenesis of the specific binding sites for these src homology 2 (SH2) domain‐containing substrates within the Trk cytoplasmic domain suggests a non‐essential function of PI3′‐K and reveals a major role for the signal controlled by the SHC binding site at tyrosine 490 and a co‐operative function of the PLC gamma‐mediated pathway for neuronal differentiation of PC12 cells.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here