Premium
Multiple and cooperative phosphorylation events regulate the CREM activator function.
Author(s) -
Groot R.P.,
Hertog J.,
Vandenheede J.R.,
Goris J.,
SassoneCorsi P.
Publication year - 1993
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1002/j.1460-2075.1993.tb06068.x
Subject(s) - activator (genetics) , microbiology and biotechnology , physics , biology , humanities , gene , biochemistry , philosophy
Phosphorylation is one of the major mechanisms by which the activity of transcription factors can be regulated. We have investigated the role of phosphorylation in the regulation of the transcription factor CREM. We show that the CREM tau activator is phosphorylated on multiple serine and threonine residues in vivo. Stimulation of various signal transduction pathways by forskolin, TPA or Ca2+ ionophore leads to enhanced phosphorylation of serine 117, concomitant with an increase in the transactivation potential of CREM tau. We have identified multiple kinases that can also phosphorylate S117 in vitro. Moreover, we show that casein kinase I and II cooperatively phosphorylate CREM tau on multiple residues, eliciting enhanced DNA binding. Cooperative phosphorylation is also observed with other kinases. These results show that the activity of CREM tau is regulated by multiple phosphorylation events, suggesting that CREM could be considered as a nuclear effector where signalling pathways may converge and/or cross‐talk.