z-logo
Premium
Trans splicing integrates an exon of 22 nucleotides into the nad5 mRNA in higher plant mitochondria.
Author(s) -
Knoop V.,
Schuster W.,
Wissinger B.,
Brennicke A.
Publication year - 1991
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1002/j.1460-2075.1991.tb04912.x
Subject(s) - biology , alternative splicing , exon , genetics , gene , microbiology and biotechnology
The genes coding for NADH dehydrogenase subunit 5 (nad5) in mitochondria of the higher plants Oenothera and Arabidopsis are split into five exons that are located in three distant genomic regions. These encode exons a + b, c and d + e, respectively. Maturation of the mRNAs requires two trans splicing events to integrate exon c of only 22 nucleotides. Both trans splicing reactions involve mitochondrial group II intron sequences that allow base pairings in the interrupted domain IV, demonstrating the flexibility of intron structures. The observation of fragmented intron sequences in plant mitochondria suggests that trans splicing is more widespread than previously assumed. RNA editing by C to U alterations in both Oenothera and Arabidopsis open reading frames improves the evolutionary conservation of the encoded polypeptides. Three C to U RNA editing events were observed in intron sequences.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here