Premium
Structure of a novel InsP3 receptor.
Author(s) -
Südhof T.C.,
Newton C.L.,
Archer B.T.,
Ushkaryov Y.A.,
Mignery G.A.
Publication year - 1991
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1002/j.1460-2075.1991.tb04882.x
Subject(s) - biology , receptor , 5 ht5a receptor , liver receptor homolog 1 , interleukin 21 receptor , neurotransmitter receptor , second messenger system , enzyme linked receptor , gabbr1 , inositol , microbiology and biotechnology , biochemistry , nuclear receptor co repressor 1 , protease activated receptor 2 , gene , transcription factor , nuclear receptor
Inositol 1,4,5‐trisphosphate (InsP3) constitutes a major intracellular second messenger that transduces many growth factor and neurotransmitter signals. InsP3 causes the release of Ca2+ from intracellular stores by binding to specific receptors that are coupled to Ca2+ channels. One such receptor from cerebellum has previously been extensively characterized. We have now determined the full structure of a second, novel InsP3 receptor which we refer to as type 2 InsP3 receptor as opposed to the cerebellar type 1 InsP3 receptor. The type 2 InsP3 receptor has the same general structural design as the cerebellar type 1 InsP3 receptor with which it shares 69% sequence identity. Expression of the amino‐terminal 1078 amino acids of the type 2 receptor demonstrates high affinity binding of InsP3 to the type 2 receptor with a similar specificity but higher affinity than observed for the type 1 receptor. These results demonstrate the presence of several types of InsP3 receptor in brain and raise the possibility that intracellular Ca2+ signaling may involve multiple pathways with different regulatory properties dependent on different InsP3 receptors.