z-logo
Premium
Eukaryotic topoisomerases recognize nucleic acid topology by preferentially interacting with DNA crossovers.
Author(s) -
Zechiedrich E. L.,
Osheroff N.
Publication year - 1990
Publication title -
the embo journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 7.484
H-Index - 392
eISSN - 1460-2075
pISSN - 0261-4189
DOI - 10.1002/j.1460-2075.1990.tb07908.x
Subject(s) - biology , topoisomerase , nucleic acid , dna , computational biology , genetics , microbiology and biotechnology
Eukaryotic topoisomerases recognize DNA topology and preferentially react with positively or negatively supercoiled molecules over relaxed substrates. To elucidate the mechanism of this recognition, we examined the interaction of topoisomerases with DNA by electron microscopy. Under all conditions employed, approximately 90% of the bound type I or II enzyme was observed at points of helix–helix juxtaposition on negatively supercoiled plasmids which contained as few as four crossovers. Recognition was independent of torsional stress, as enzyme molecules were also found at crossovers on linear DNA. Since juxtaposed helices are more prevalent in supercoiled compared with relaxed nucleic acids, we propose that eukaryotic topoisomerases I and II recognize underwound or overwound substrates by interacting preferentially with DNA crossovers. This may represent a general mechanism for the recognition of DNA topology by proteins.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here