z-logo
Premium
mTORC1‐ and mTORC2‐interacting proteins keep their multifunctional partners focused
Author(s) -
BrachoValdés Ismael,
MorenoAlvarez Paola,
ValenciaMartínez Israel,
RoblesMolina Evelyn,
ChávezVargas Lydia,
VázquezPrado José
Publication year - 2011
Publication title -
iubmb life
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.132
H-Index - 113
eISSN - 1521-6551
pISSN - 1521-6543
DOI - 10.1002/iub.558
Subject(s) - mtorc1 , mtorc2 , microbiology and biotechnology , chemistry , computational biology , biology , pi3k/akt/mtor pathway , signal transduction
The mammalian target of rapamycin, best known as mTOR, is a phylogenetically conserved serine/threonine kinase that controls life‐defining cellular processes such as growth, metabolism, survival, and migration under the influence of multiple interacting proteins. Historically, the cellular activities blocked by rapamycin in mammalian cells were considered the only events controlled by mTOR. However, this paradigm changed with the discovery of two signaling complexes differentially sensitive to rapamycin, whose catalytic component is mTOR. The one sensitive to rapamycin, known as mTORC1, promotes protein synthesis in response to growth factors and nutrients via the phosphorylation of p70S6K and 4EBP1; while the other, known as mTORC2, promotes cell migration and survival via the activation of Rho GTPases and the phosphorylation of AKT, respectively. Although mTORC2 kinase activity is not inhibited by rapamycin, hours of incubation with this antibiotic can impede the assembly of this signaling complex. The direct mechanism by which mTORC2 leads to cell migration depends on its interaction with P‐Rex1, a Rac‐specific guanine nucleotide exchange factor, while additional indirect pathways involve the intervention of PKC or AKT, multifunctional ubiquitous serine/threonine kinases that activate effectors of cell migration upon being phosphorylated by mTORC2 in response to chemotactic signals. These mTORC2 effectors are altered in metastatic cancer. Numerous clinical trials are testing mTOR inhibitors as potential antineoplasic drugs. Here, we briefly review the actions of mTOR with emphasis on the controlling role of mTORC1 and mTORC2‐interacting proteins and highlight the mechanisms linked to cell migration. © 2011 IUBMB IUBMB Life, 2011

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here