z-logo
Premium
Vitamin E: Mechanism of transport and regulation in the CNS
Author(s) -
Lee Paris,
Ulatowski Lynn M.
Publication year - 2019
Publication title -
iubmb life
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.132
H-Index - 113
eISSN - 1521-6551
pISSN - 1521-6543
DOI - 10.1002/iub.1993
Subject(s) - vitamin d and neurology , micronutrient , vitamin , vitamin e , medicine , oxidative stress , disease , intracellular , biology , physiology , endocrinology , antioxidant , microbiology and biotechnology , biochemistry , pathology
Although vitamin E has been recognized as a critical micronutrient to neuronal health for more than half a century, vitamin E transport and regulation in the brain remain a mystery. Currently, the majority of what is known about vitamin E transport has been delineated in the liver. However, clues from the pathogenesis of neurological‐related vitamin E deficient diseases point to compromised neuronal integrity and function, underlining the critical need to understand vitamin E regulation in the CNS. Additionally, most of the same molecular players involved in vitamin E transport in the liver are also found in CNS, including sterol SRB1, TTP, and ABCA/ABCG, suggesting similar intracellular pathways between these organ systems. Finally, based on chemical similarities, intracellular CNS shuttling of vitamin E likely resembles cholesterol's use of ApoE particles. Utilizing this information, this review will address what is currently known about trafficking vitamin E across the blood brain barrier in order to ensure an adequate supply of the essential nutrient to the brain. Although debatable, the health of the brain in relation to vitamin E levels has been demonstrated, most notably in oxidative stress‐related conditions such as ataxias, Alzheimer's disease, and Parkinson's disease. Future vitamin E research is vital in understanding how the regulation of the vitamin can aid in the prevention, treatment, and curing of neurological diseases. © 2018 IUBMB Life, 71(4):424–429, 2019

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom