z-logo
Premium
Coupling between Marine Plankton and Freshwater Flow in the Plumes off a Small Estuary
Author(s) -
Schlacher Thomas A.,
Skillington Anna J.,
Connolly Rod M.,
Robinson Wayne,
Gaston Troy F.
Publication year - 2008
Publication title -
international review of hydrobiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.524
H-Index - 52
eISSN - 1522-2632
pISSN - 1434-2944
DOI - 10.1002/iroh.200711050
Subject(s) - estuary , zooplankton , oceanography , plankton , pelagic zone , environmental science , plume , estuarine water circulation , phytoplankton , biomass (ecology) , freshwater inflow , discharge , ecology , geology , geography , nutrient , biology , drainage basin , cartography , meteorology
Freshwater discharge from rivers is a powerful forcing agent in coastal ecosystems. It not only generates strong ecological effects in estuaries, but also drives the dynamics of nearshore marine waters where prominent river plumes form biogeochemical hot spots in coastal seas worldwide. Large plumes from major rivers exert important controls on pelagic processes. The majority of estuaries are smaller, however, and the importance of the smaller plumes they generate is unknown. We measured the degree of coupling between freshwater flow and inshore zooplankton in such a plume from a subtropical estuary on the east coast of Australia. Flow regimes encompassed long periods of low freshwater input, punctuated by pulsed freshets that initiated the formation of buoyant, lower‐salinity plumes in the nearshore marine zone. Plumes stimulated phytoplankton biomass in the receiving waters, and ultimately changes in zooplankton assemblages. Zooplankton responded strongly to river discharge: (1) in the absence of substantial freshwater flows and plumes, zooplankton was broadly similar in density and biomass across the estuarine‐marine gradient; (2) freshets that generated significant plumes strongly modified hydrological conditions and lowered zooplankton in the estuarine and nearshore waters, and (3) after the initial freshet, zooplankton in the residual plume was at a higher density in nearshore than shelf waters. We demonstrate that coupling between riverine and coastal pelagic systems operates in small plumes, but that there is substantial temporal variance linked to fluctuations in freshwater delivery. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here