Premium
Irrigation and drainage systems research and development in the 21st century
Author(s) -
Schultz Bart,
De Wrachien Daniele
Publication year - 2002
Publication title -
irrigation and drainage
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 38
eISSN - 1531-0361
pISSN - 1531-0353
DOI - 10.1002/ird.67
Subject(s) - drainage , waterlogging (archaeology) , agriculture , irrigation , water resources , irrigation management , sustainability , water conservation , water resource management , business , environmental planning , environmental science , environmental resource management , geography , ecology , wetland , archaeology , biology
Abstract One critical problem confronting mankind today is how to manage the intensifying competition for water between expanding urban centres, traditional agricultural activities and in‐stream water uses dictated by environmental concerns. In the agricultural sector, the dwindling number of economically attractive sites for large‐scale irrigation and drainage projects limits the prospects of increasing the gross cultivated area. Therefore, the required increase in agricultural production will necessarily rely largely on a more accurate estimation of crop water requirements on the one hand, and on major improvements in the construction, operation, management and performance of existing irrigation and drainage systems, on the other. The failings of present systems and the inability to sustainably exploit surface and groundwater resources can be attributed essentially to poor planning, design, system management and development. This is partly due to the inability of engineers, planners and managers to adequately quantify the effects of irrigation and drainage projects on water resources and to use these effects as guidelines for improving technology, design and management. To take full advantage of investments in agriculture, a major effort is required to modernize irrigation and drainage systems and to further develop appropriate management strategies compatible with the financial and socio‐economic trends, and the environment. This calls for a holistic approach to irrigation and drainage management and monitoring so as to increase food production, conserve water, prevent soil salinization and waterlogging, and to protect the environment. All this requires, among others, enhanced research and a variety of tools such as water control and regulation equipment, remote sensing, geographic information systems, decision support systems and models, as well as field survey and evaluation techniques. To tackle this challenge, we need to focus on the following issues: affordability with respect to the application of new technologies; procedures for integrated planning and management of irrigation and drainage systems; analysis to identify causes and effects constraining irrigation and drainage system performance; evapotranspiration and related calculation methods; estimation of crop water requirements; technologies for the design, construction and modernization of irrigation and drainage systems; strategies to improve irrigation and drainage system efficiency; environmental impacts of irrigation and drainage and measures for creating and maintaining sustainability; institutional strengthening, proper financial assessment, capacity building, training and education. Copyright © 2002 John Wiley & Sons, Ltd.